Cellular localization of predicted transmembrane and soluble chemoreceptors in Sinorhizobium meliloti.
نویسندگان
چکیده
Bacterial chemoreceptors primarily locate in clusters at the cell pole, where they form large sensory complexes which recruit cytoplasmic components of the signaling pathway. The genome of the soil bacterium Sinorhizobium meliloti encodes seven transmembrane and two soluble chemoreceptors. We have investigated the localization of all nine chemoreceptors in vivo using genome-encoded fusions to a variant of the enhanced green fluorescent protein and to monomeric red fluorescent protein. Six of the transmembrane (McpT to McpX and McpZ) and both soluble (McpY and IcpA) receptors localize to the cell pole. Only McpS, encoded from the symbiotic plasmid pSymA, is evenly distributed in the cell. While the synthesis of all polar localized receptors is confined to exponential growth correlating with the motility phase of cells, McpS is only weakly expressed throughout cell culture growth. Therefore, motile S. meliloti cells form one major chemotaxis cluster that harbors all chemoreceptors except for McpS. Colocalization and deletion analysis demonstrated that formation of polar foci by the majority of receptors is dependent on other chemoreceptors and that receptor clusters are stabilized by the presence of the chemotaxis proteins CheA and CheW. The transmembrane McpV and the soluble IcpA localize to the pole independently of CheA and CheW. However, in mutant strains McpV formed delocalized polar caps that spread throughout the cell membrane while IcpA exhibited increased bipolarity. Immunoblotting of fractionated cells revealed that IcpA, which lacks any hydrophobic domains, nevertheless is associated to the cell membrane.
منابع مشابه
Sequential assignment and secondary structure of the 14 kDa chemotactic protein CheY2 from Sinorhizobium meliloti.
Motile bacteria are able to direct their swimming movement towards the most favourable chemical environment. This ability, known as chemotaxis, is mediated by a signal transduction pathway involving a set of cytoplasmic proteins and extracellular rotating helical flagella. CheA, an autokinase, activates a response regulator, CheY, by phosphorylation. CheY propagates the signal, which is sensed ...
متن کاملSinorhizobium meliloti dctA mutants with partial ability to transport dicarboxylic acids.
Sinorhizobium meliloti dctA encodes a transport protein needed for a successful nitrogen-fixing symbiosis between the bacteria and alfalfa. Using the toxicity of the DctA substrate fluoroorotic acid as a selective agent in an iterated selection procedure, four independent S. meliloti dctA mutants were isolated that retained some ability to transport dicarboxylates. Two mutations were located in...
متن کاملSinorhizobium meliloti CpdR1 is critical for co-ordinating cell cycle progression and the symbiotic chronic infection.
ATP-driven proteolysis plays a major role in regulating the bacterial cell cycle, development and stress responses. In the nitro -fixing symbiosis with host plants, Sinorhizobium meliloti undergoes a profound cellular differentiation, including endoreduplication of the ome. The regulatory mechanisms governing the alterations of the S. meliloti cell cycle in planta are largely unknown. Here, we ...
متن کاملPolar localization of replicon origins in the multipartite genomes of Agrobacterium tumefaciens and Sinorhizobium meliloti.
The origins of replication of many different bacteria have been shown to reside at specific subcellular locations, but the mechanisms underlying their positioning and segregation are still being elucidated. In particular, little is known about the replication of multipartite genomes in bacteria. We determined the cellular positions of the origins of the replicons in the alpha proteobacteria Agr...
متن کاملGlobal analysis of cell cycle gene expression of the legume symbiont Sinorhizobium meliloti.
In α-proteobacteria, strict regulation of cell cycle progression is necessary for the specific cellular differentiation required for adaptation to diverse environmental niches. The symbiotic lifestyle of Sinorhizobium meliloti requires a drastic cellular differentiation that includes genome amplification. To achieve polyploidy, the S. meliloti cell cycle program must be altered to uncouple DNA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 191 18 شماره
صفحات -
تاریخ انتشار 2009